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1. Abstract 
1.1. Executive Summary 
The Detector and Extractor of Fileprints (DEF) algorithm is a technique for representing data 
sequences in a reproducible and compressed form. It combines a periodogram-based process 
with the Adjustable Bandwidth Concept (ABC) detector algorithm to generate these outputs. The 
outputs of this process have a number of properties but two of these properties stand out. 

• The fileprints are reproducible from machine to machine and platform to platform. 
• The fileprints of like file types hold significant similarities. 

From these two properties of DEF file-prints bring about the two primary goals of this effort. 
The first goal is to protect the payload of a file from unauthorized tampering or distribution by 
creating an associated file-print to deliver with the original file for comparison purposes. Along 
the same lines it holds that even if a file is changed in size or renamed, the unchanged segments 
of the file can still be identified as being consistent. The applications of this technique could 
include tampering detection and copyright/intellectual property rights claim analysis. 
The second goal was to be able to identify an arbitrary segment of data by comparing it to the 
DEF outputs run on "truth" files of known types. Upon analyzing a segment of data, the DEF 
outputs could be statistically compared with known prints of known types. The one with the least 
amount of error in comparison would then be known as the "detected" segment data type. 
With these goals in mind a demonstration application was written in the Java programming 
language. Design goals beyond the implementation of DEF included cross-platform 
compatibility and intellectual property/code reusability. The application created consists of 
graphical and textual modes of operation both of which are capable of producing file-prints on 
one or more target files. The graphical interface takes the next step by providing the user with the 
ability to analyze the outputs of the DEF process. 
A general report is created for each file that is processed. This report provides information on the 
file itself, the outputs created and how long the operation took to complete. A visualization of the 
prints created is presented to the user for demonstration and engineering purposes. After these 
prints are created they are processed statistically and compared to a truth database of previously 
processed files and an attempt is made to detect what the MIME type of the segment or file and 
the comparisons made are presented to the user. If the application sees a data source once, 
subsequent calls on the same data source give the user the opportunity to compare the two sets of 
DEF outputs for differences and similarities. 
The tamper detection capabilities of the system are strong. It is able to detect very small 
differences in data segments. The caveat of our approach thus far is that the precision is only as 
good as the segment size being processed.  Further precision would make this feature more 
useful and open it up to more applications of the technology. 
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The blind data identification capabilities are currently at approximately 60% efficiency, taking 
into account some file types detect better than others. Currently the application only processes 
the first stage file print as a source of statistics. In the future the other stages of processing should 
be added to this process. A Bayesian analysis technique, normalization of highly variant truth 
samples and other statistical improvements can also be applied to improve the performance of 
the algorithm in the future. 

2. Introduction 
2.1. DEF/ABC Technology 
Dr. Andrew Noga of the Air Force Research Laboratory (AFRL) developed the DEF algorithm. 
The DEF algorithm provides a repeatable process by which reproducible condensed data-prints 
can be generated. Potential applications of the algorithm include alternatives to modern 
watermarking approaches, data tamper protection and blind data segment content identification. 

• DEF - Detector and Extractor of File-Prints 
• ABC - Adjustable Bandwidth Concept Detector 

Operation of the DEF algorithm starts with data segment selection. This segment could be a 
portion of a file or any other stream of data. After the selection process is complete, a 
periodogram (discrete Fourier transform) is calculated for that data segment. The result of that 
transformation is filtered by the ABC detector, which generates a pre-specified number of 
detection maps. A threshold is applied to the detection maps and then the data is stored in an 
efficient binary format. This binary output is known as the file-print or data-print. 
The following diagram gives a general overview of the DEF algorithm. 
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Figure 1:  The DEF Algorithm 
 

2.2. Java Technology 
Java was chosen as the language for this effort primarily for its portability. The development 
platform consists of the following configuration: 

• The Sun Java Developers Kit v1.4.2 
• The NetBeans v3.5 IDE 
• CVS Version Control System v1.11.1.3 (Build 57j) 

All of these tools are freely available on the Internet and this environment is easily configured on 
most platforms including Windows, UNIX or Linux. 

2.3. Other Technologies 
To manage the blind data identification metadata and organize the previously processed data-
prints, a Java relational database package was implemented as part of the demonstration.  Hsqldb 
is a relational database engine written in Java, with a JDBC driver, supporting a rich subset of 
ANSI-92 SQL (BNF tree format).  It offers a small, fast database engine that offers both in 
memory and disk based tables. 
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Another sub-technology to Java included in this project was the Jimi library, also developed and 
distributed by Sun Microsystems. This graphics conversion and processing library is used in 
DEF primarily in the context of image format encoding and decoding. This technology may be 
incorporated in future releases of Java. 

3. Design and Implementation 
3.1. Overview 
There are three primary tasks associated with this portion of the DEF Java demonstration effort: 

1. Implementation of the DEF and ABC algorithms and the user interface in the Java 
programming language. 

2. File tamper detection using the DEF algorithm. 
3. Blind file identification using the DEF algorithm. 

Another goal of the development process was reusability of key technologies involved in the 
DEF process. These key technologies included the DEF and ABC algorithms, statistical 
techniques used in data-print processing and data format encoders and decoders. Efforts have 
been made to maintain separation of presentation and implementation. 

3.2. Class Heirarchy 
The DEF demonstration application is driven by the DEFUI class. This class contains the main 
method of the application which is specified in the applications JAR manifest. From this class 
the user can either run a set of inline routines for command line processing or start the Swing 
user interface to work in graphical mode. 
Once in graphical mode, operation is driven by the applications "views". A view is a 
representation of the applications data pertaining to one or more functions of the DEF algorithm. 
Currently the application has four view types: 

• DEFHTMLView 
• The base view for a processing session, generates the data-prints and the 

thresholds file and reports generated output, run time and other useful information 
back to the user. 

• DEFTamperView 
• Show differences, both textually and graphically, between two sets of data-prints 

taken of the same target data. Used to find similarities and differences in data over 
time. 
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• DEFFIDView 

• Processes the file with some statistical techniques and compares the results with an 
internal database of truth data. Displays a graph representing error factors in 
comparison to the truth data set. 

• printImageDump 
• Generates a graphical view of the detection maps, or data-prints, created by the 

DEF algorithm. Useful for side by side analysis and as a general purpose 
engineering and demonstration tool. 

 

 

Figure 2:  Basic DEF Classes 
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A number of utility classes not described here were also developed to assist in tasks related to 
mathematical operations, random number generation, graphical user interface and automation, all 
of which are suitable for reuse in this and other java applications. 

3.3. User Interface 
The user interface for this project was designed to try to meet a number of goals. An attempt was 
made to keep the functionality general enough to be useful as an engineering tool for further 
application development but compact enough to display potential uses of the application to 
interested parties. 
When the application is first started the user is presented with the main application window. This 
window is made up of a main menu, a toolbar with some user preferences, a file navigation area 
and the general desktop where reports are displayed. 
 

 
 

Figure 3:  The Main Application Window 
 

As the user begins to create data-prints they are indexed by file name and by the time of the 
printing and stored for later access. A listing of previously created prints, the number of stages 
included and the date and time the print was taken are displayed in the data-print database view. 
This view is found on the second tab in the left-most pane along with the file navigation tool. 

fr^fn 
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Figure 4:  The Data-Print Database 

Each time the user creates a print they are first presented with a general report of what has taken 
place. This report displays the file that was processed, the number of prints created and their 
locations, the time taken to create the prints and a ratio of data processed to time for 
benchmarking purposes. 
 

 

Figure 5:  The Main Report 
 

RIB System      DEF FilePfinls 

exiiense-eoir-0727200a.xls @ 2003-11-19 16:13:17.15613 stages 1 

afrl-bg2.ipe @ 2003-11-19 16:24:15.04613 stages ] 

afrl-me(l.air@2ail3-11-19 16:24:15.296 13stages] 

der.j|ig@20D3-11-191S:24:15.S2e[ 3 stages] 

iiff l-l)a.]pg ® 2003-11-19 16:24:14-06S [ 3 stages ] 

ilefdemo.JiiB® 2003-11-19 16:24:16.109[3 stages] 

afrl-lig.gifig 2003-11-19 16:24:14.09 [3 stages I 

lemp.j|)g@2003-11-ig 16:24:16.406] 3 stages] 

arrl-lig34pe @ 2003-11-19 16:24:15.234 ] 3 stages ] 

temp.png @ 2003-11-19 16:24:16.631 ] 3 stages ] 

afil-bg2jpg @ 2003-11-19 16:29:03.710 ] 3 stages ] 

arn Dg.jpg @ 2003-11 19 16:29:03.570 ] 3 stages) 

detcjeino.jiig Q 2003-11-19 1S:29:04.7S 13 stages ] 

temp.iing ® 2003-11-19 16:29:05.046 ] 3 stages ] 

der.jiig @ 2003-11-19 16:29:04.5151 3 stages ] 

temp.]|)g @ 2003-11-19 16:29:04.075 [ 3 stages ] 

arrl-meil.gif@ 2003.11-19 16:29:04.070] 3 stages] 

afrl-bg34pg @ 2003-11-19 16:29:03.765 ] 3 stages ] 

afil-bg.gif@ 2003-11-19 16:29:03.515 ] 3 stages ] 

temp.jiig @ 2003-11-19 16:34:45.593 ] 3 stages ] 

def.jiig @ 2003-11-19 16:34:45.0 [ 3 stages | 

aftl-bg.jpg @ 2003-11-19 16:34:44-107 ] 3 stages ] 

dellsuiipott.xls @ 2003-11-19 16:34:46.0 ] 3 stages | 

temp.png @ 2003-11-19 16:34:45.64 ] 3 stages | 

Q Citexanqiled^^aitial^arrier Ja^^eg .^irf s 
( Processfcig Resulls     PitilVieii  ; He MenlMicaliiiii     Tamper Cimipaiismi I 

DEF FUepiint Creation 

Operation successful. 

File: C:\eaan:?iledel^Hrliaftcamer_j^peg(102-4KB) 

Processing time :   D 297 secona(s) (344 73116KB/s) 

Generated files :    C:\eaan:?iledef\bin^irinls\camerJ^pe^004020!'140913\camajayp^thr(0-304KB) 
C:\eaan:?iledef\bin^irinls\camerJ^pe^004020!'140!'13\cama_|an)cg Id^i (6-403KB) 
C:\eaan:?iledef\bin^irinls\camerJ^pe^004020!'140!'13\camer_j^peg-2-d5i (6-403KB) 
C:\eaampledef\bin^irinls\camerJ^pe^004020!'140!'13\cameJa5^eg 3-dip (6-403KB) 
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The next tab in the report window is the print view. In this view the user can actually view the 
prints created and look for interesting segments in the data. This view’s primary purpose is as an 
engineering aid but is quite useful in a demonstration context. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6:  The Print View 
 

After a print is created and stored in the database, subsequent runs on the same file give the user 
the ability to compare the two runs together and see if any changes have been made. Both a 
graphical representation and textual chunk-by-chunk comparison outputs are provided. A future 
use of this view may be to compare data to see what is the same, for example, in a copyright 
contention scenario. 
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Figure 7:  The Tamper Detection View 

A truth database was constructed by creating prints for known file-types and storing statistical 
analysis of these outputs in an internal database. At runtime the users’ data is analyzed in a 
similar fashion and then compared against this database. Rudimentary support has been 
implemented with interesting results. This view displays an error term for each known type of 
file in comparison to the target file. The green bar denotes the detected type. 
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Figure 8:  The Blind File Identification View 

4. Conclusions and Future Efforts 
4.1. Conclusions 
This effort to date has provided very interesting results in both the tampering detection and blind 
identification areas. It has been successfully demonstrated as part of the Scientific Advisory 
Board (SAB) presentation for AFRL in November of 2003. With further development and 
refinement of the techniques started here, the DEF algorithm has a bright future as a potential 
part of numerous non-civilian and civilian applications. 

4.2. Future Efforts 
Future efforts should include the following: 

• Improvement of the blind file detection capablilities. 
• Improvement in the precision capabilities of the tampering detection algorithm. 
• Better control for "batch-mode" processing. 
• Refinement of the user interface. 
• Other more application specific tasks. 
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Microsoft Excel Document 

Microsoft PowerPoint Document 

Microsoft Worfl Document 

PC tiitmap flata, Winflows 3.xformat, 24 bpp 

PC tiitmap aata. Winflows 3 xfoimat, B bpp 

PDF flocument 
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Results of Stage 1 Fileprint Statistical Analysis 
(Highlighted/Gieen selection is the detected filetype.) 
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